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Abstract 

An extensive series of phase refinements on model 
structure factors has been carried out to determine the 
scope and limitations of real-space symmetry averaging 
at low resolution. These calculations were used to 
derive and justify the strategy used to solve the 
structure of polyoma virus capsids at 22.5 ,/k resolution 
[Rayment, Baker, Caspar & Murakami (1982). Nature 
(London), 295, 110-115]. The calculations showed (1) 
that phases from a wide variety of models can be 
successfully refined; (2) a low R factor (,-,10%) 
between the constrained and observed amplitudes 
corresponds to a small error between the calculated and 
true phases; (3) on convergence to a low R factor 
there is no residual bias in the final phases introduced 
by the initial phasing model. The model calculations 
were also used to determine the limitations imposed by 
series termination, unmeasured data, random errors in 
the data and the role of the molecular envelope on the 
phase refinement. 

Introduction 

The crystal structure of mouse polyoma virus capsids 
has been solved at 22 .5A resolution by X-ray 
diffraction (Rayment, Baker, Caspar & Murakami, 
1982). The resultant electron density map shows that 
the organization of the viral capsid does not corre- 
spond to that expected from the principles of virus 
design and precepts of quasi-equivalence set forward by 
Caspar & Klug (1962). The surface of polyoma virus 
seen in electron micrographs of negatively stained 
particles is composed of 72 morphological units that 
are located at the 12 five- and 60 sixfold vertices of a 
T = 7d icosahedral surface lattice (Finch, 1974). From 
this it was presumed that the virus capsid would be 
composed of 60 hexamers and 12 pentamers of the 
major coat protein. The crystal structure of the virus 
capsid shows, however, that all 72 morphological units 
are pentamers. Because this result contradicts a theory 
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which has accommodated all previous structural 
knowledge of viral architecture, the method used to 
determine the structure has been critically evaluated. 

The structure was solved using the fivefold non- 
crystallographic symmetry present in the diffraction 
data. The virus capsids crystallize in space group 123 
where only the tetrahedral subgroup of the particle 
icosahedral symmetry is expressed in the crystal lattice. 
The fivefold noncrystallographic symmetry was used to 
refine, by symmetry averaging in real space, an initial 
set of phases derived from a model constructed 
according to the dimensions and surface features 
deduced from electron microscopy and small-angle 
X-ray diffraction. 

The purpose of this paper is to demonstrate that the 
strategy adopted for solving the structure of polyoma 
virus capsid can yield the correct solution. This was 
accomplished by trying all the procedures that were 
used to refine the real capsid structure on a model set of 
amplitudes. The use of model amplitudes instead of 
observed data to test the method had the advantage 
that the correct phases were known. Thus, it was 
possible to judge the quality of the refinement pro- 
cedures by comparison of the refined and correct 
phases. The questions addressed by the model cal- 
culations were: (a) What are the intrinsic limitations in 
the refinement process? (b) What are the effects of 
errors and unmeasured data on the refinement? (c) Can 
low-resolution phase refinement and extension dis- 
tinguish between hexameric or pentameric morpho- 
logical units? and (d) Does the initial phase set bias the 
final result? 

The refinement method 

The use of noncrystallographic symmetry in phase 
refinement is well established. It has played an essential 
role in the determination of four virus structures at high 
resolution: the protein disk of tobacco mosaic virus 
(Bloomer, Champness, Bricogne, Staden & Klug, 
1978), tomato bushy stunt virus (Harrison, Olson, 

© 1983 International Union of Crystallography 



IVAN RAYMENT 103 

Schutt, Winkler & Bricogne, 1978), southern bean 
mosaic virus (Abad-Zapatero, Abdel-Meguid, Johnson, 
Leslie, Rayment, Rossmann, Suck & Tsukihara, 1980, 
1981), and satellite tobacco necrosis virus (Unge, 
Liljas, Strandberg, Vaara, Kannan, Fridborg, 
Nordman & Lentz, 1980). These are currently the 
largest structures determined by X-ray diffraction 
analysis to molecular resolution. 

Noncrystallographic symmetry was first proposed to 
be a source of phase information by Rossmann & Blow 
in 1962. Their expressions for applying the constraints 
operated in reciprocal space and were inconvenient to 
use since the number of computations increased with 
the square of the number of reflections. This problem 
was simplified by Bricogne (1974, 1976) who refor- 
mulated the expressions in terms of symmetry averag- 
ing in real space, as had been suggested by Main (1967) 
and Rossmann (1972). Symmetry averaging in real 
space has proved to be the computationally practical 
approach for using noncrystallographic symmetry as a 
phase constraint. 

Phase refinement in real space is accomplished by 
Fourier transforming a symmetry-averaged electron 
density map. The initial electron density map is 
computed using the observed structure factors com- 
bined with phases derived from isomorphous replace- 
ment or from a previous cycle of phase refinement. The 
noncrystallographic symmetry is applied to the density 
within an envelope which contains the structure. Those 
parts of the map which are not included in the envelope 
are set to a constant value given by their average 
electron density. Refined phases obtained by Fourier 
transforming this modified electron density map form 
the basis for starting the next cycle of refinement. 
Programs for accomplishing these steps have been 
developed by Bricogne (1976), Johnson (1978) and 
Nordman (1980). The algorithm used in the work to be 
described follows the procedure of Johnson, which is 
essentially the same as that described by Bricogne. 

Low-resolution phase refinement 

The use of noncrystallographic symmetry is valid at 
low resolution; however, it is difficult to assess 
independently the quality of the refined phases. The 
correctness of the structures solved at high resolution 
has been judged by their stereochemical interpret- 
ability. This criterion is not applicable at low resolution. 

The initial phases at very low resolution can be 
derived from measurement of the spherically averaged 
transform by small-angle X-ray scattering or by model 
building based on electron microscopy. These phases 
may not be randomly distributed about the correct 
phases and may consequently bias the final structure 
towards the initial presumptions. This is a particularly 
serious problem for phases generated from models 

because they constitute a self-consistent set which will 
differ systematically from the correct set. Thus, it must 
be demonstrated that the initial model does not impose 
an indelible imprint on the refined phases. 

Two virus structures have been solved at low 
resolution. Tomato bushy stunt virus was solved 
initially at 28/k resolution using information from 
solution scattering (Harrison, 1971). These phases were 
adequate to locate heavy-atom positions in an iso- 
morphous derivative (Harrison & Jack, 1975). The 
resultant isomorphous phases were refined in reciprocal 
space to yield a low-resolution electron density map. 
Southern bean mosaic virus was solved at 22.5/k by 
fitting the low-resolution diffraction data to the trans- 
form of a solid sphere (Johnson, Akimoto, Suck, 
Rayment & Rossmann, 1976). This approach was 
satisfactory because the surface morphology of the 
virus is quite smooth. The refined electron density map 
showed features that were confirmed at high resolution. 
In both of these structure determinations the initial 
phases were all centric. In the case of tomato bushy 
stunt virus the heavy-atom difference Fourier showed 
the unresolved average of the enantiomorphic images of 
the heavy-atom sites. The acentric locations were found 
using Fourier search methods. The enantiomorphic 
images of southern bean mosaic virus could not be 
separated. This imposed a limit on the resolution to 
which the ab initio phase determination could be taken. 
Introduction of the noncentric contribution to the initial 
or partially refined phases is important in order to 
obtain satisfactory phase refinement. For polyoma 
virus the T = 7d distribution of morphological units in 
the starting model introduces the correct acentricity 
into the initial phases. 

The numerical criterion by which to judge the 
convergence of the phase refinement is the R factor 
between the observed data and the calculated ampli- 
tudes from the constrained map. This value is a 
measure of how well the phases express the imposed 
noncrystallographic constraints. If the applied con- 
straints are valid and stringent, the R factor should be a 
good measure of phase convergence. Thus, it is 
important to know what value of the R factor should be 
expected for a given set of experimental conditions 
before the refined phases can be accepted. 

Phase extension 

The molecular envelope and solvent flattening can be 
used as a constraint to derive phases to a higher 
resolution than is possible from the initial model 
calculations. The feasibility of phase extension was 
demonstrated by Argos, Ford & Rossmann (1975) at 
fairly high resolution on glyceraldehyde-3-phosphate 
dehydrogenase, which exhibits 222 molecular sym- 
metry. Phase extension has also been tested by 
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extending phases from 10 to 4 A resolution for satellite 
tobacco necrosis virus (Nordman, 1980). In both of 
these cases, the structure of the molecular aggregates 
had already been obtained by isomorphous replace- 
ment and refined by conventional molecular replace- 
ment so that the results from ab initio phase extension 
could be verified. At low resolution the method was 
used to phase reflections between 30 and 22.5 A 
resolution for southern bean mosaic virus (Johnson, 
Akimoto, Suck, Rayment & Rossmann, 1976). All the 
structural features in the low-resolution electron density 
map were confirmed in the subsequent high-resolution 
structure determination. 

The low-resolution electron density map for polyoma 
virus did not show the pentamer-hexamer arrange- 
ment of protein subunits expected from the precepts of 
quasi-equivalence. The model calculations to be 
described were undertaken to demonstrate that phase 
refinement and extension can yield definitive structural 
results at low resolution. A further objective was to 
establish the best strategy for utilizing the non- 
crystallographic constraints. 

Creation of  a model data set 

Model diffraction data sets were calculated by Fourier 
transforming models which exhibited many of the 
features of polyoma virus capsid structure inferred 
from electron microscopy and small-angle diffraction. 
These data sets were used to characterize the expec- 
tations and limitations of the molecular replacement 
method at low resolution. The findings were reason- 
ably independent of the model used to generate the 
structure factors, although the exact statistics varied. 
The experiments described here were performed using 
structure factors from one basic model so that the 
relative effects of changing a given parameter could be 
seen. The amplitudes and phases of these structure 
factors, which took the place of the observed polyoma 
diffraction data, are designated the 'native' model 
amplitudes and phases throughout the rest of the paper. 

The amplitudes and phases were generated by 
Fourier transforming a model electron density map 

Table 1. The strategy for building a model electron 
density map 

1. Calculate the locations of the structural entities in asymmetric 
unit. 

2. Determine which grid points are associated with the structural 
entity. 

3. Calculate the density value for each point. 
4. Pack the coordinates of each point into one word. 
5. Store the packed word and density value. 
6. Sort the entire list of grid points on section number. 
7. Construct the electron density map. 
8. Fourier transform the map to obtain structure factors. 

whose unit-cell dimensions and space group were 
identical to those of the polyoma capsid crystals (I23, 
a = 572 A). The strategy for calculating the maps is 
summarized in Table 1. 

The image reconstruction of polyoma virus showed 
that the surface consists of 72 stubby protrusions with 
no discernible substructure, arranged on a T = 7d 
icosahedral surface lattice (Finch, 1974). These 
features were modeled by creating a map in which the 
virus capsid was built from 72 hollow cylinders 42 A 
tall with an external and internal diameter of 70 and 
34 A, respectively, representing the protruding do- 
mains. These morphological units rested on a shell of 
density extending from a radius of 190 to 200 A. The 
surfaces of the model were softened by adding a 
Gaussian fail-off of 2 A width at half-height, extending 
the radius of the capsomers to ~247 A before trailing 
off. The phases from this model were adequate for 
initiating the refinement against the real capsid data. 
Additional features were added to this simple model in 
order to generate a more realistic set of structure 
factors for testing the refinement procedures. The 
density of the inner shell was set to twice that of the 
protruding cylinders. Then substructure was added to 
the model by embedding small cylinders of density 
12 A in diameter into the walls of the morphological 
units. Five small cylinders were placed in each of the 12 
pentavalent units whereas six small cylinders were 
placed in each of the 60 hexavalent units. In this way 
the substructure showed a T = 7 distribution in which 
the small cylinders represented the expected 420 
quasi-equivalently related protein subunits. The density 
of the small cylinder subunits was equal to that of the 
hollow cylinders in which they were embedded so that 
together their maximum density was never greater than 
that of the inner shell. The small cylinder substructure 
constituted 10% of the total density in the model. This 
small contribution was chosen to test the sensitivity of 
the refinement method and to mimic the substructural 
density fluctuations observed in the electron density 
maps of the polyoma capsomers. 

The model was further elaborated by placing 60 
holes in the shell, 34 A in diameter, located close to one 
of the local threefold axes. These were added because 
similar density fluctuations were seen in the real 
polyoma capsid density map and it was of interest to 
see if the refinement could return these features in the 
computed model maps. A projection of this model 
electron density map at 22.5 A resolution down an 
icosahedral fivefold axis and through a hexavalent unit 
is shown in Figs. 1 (a) and (b). 

Intrinsic limitations in the refinement 

It is important to establish if there are any features of 
the refinement method and algorithm that will prevent 
the phases from converging to their correct values. This 
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is necessary in order to establish a standard by which 
the refinements may be judged. The 'native' model 
amplitudes were free from errors of measurement and 
therefore represent the best possible data for testing the 
method. 

There are two intrinsic limitations: firstly, series 
termination and, secondly, inaccuracy of the averaging 
algorithm. Series termination has the greatest effect. 
This results in diffraction ripples which extend through- 
out the solvent and density regions of the map. The 
magnitude of the ripples increases as the resolution of 
truncation decreases. Thus, any electron density map 
calculated from correct amplitudes and phases will not 
have flat solvent regions unless all the data are included 
in the calculation. 

The refinement process entails imposing the non- 
crystallographic symmetry on the electron density map 
and flattening the solvent regions. New phases and 
calculated amplitudes are obtained by Fourier trans- 
forming this constrained map. The phases within the 

a 

t 
Fig. I. Density maps of half of the native model at 22.5 ,/~ 

resolution projected down (a) the icosahedral fivefold axis and 
(b) through the hexavalent morphological unit. 

resolution limit will adjust themselves to produce an 
artificially flat solvent region if the data have been 
truncated. Consequently, the refined phases will differ 
from their correct values as will the calculated 
amplitudes. This effect is more pronounced for trun- 
cation at 30 A than at 22.5 A resolution. 

The effect of solvent flattening was shown b), 
calculating an electron density map using the 30 A 
structure factors and perfect phases from the 'native' 
model. The solvent regions were set to their average 
value leaving the electron density within the envelope 
untouched. The modified map was Fourier trans- 
formed to give a new set of calculated amplitudes and 
phases. The R factor between the calculated and 
original structure factors was 4%, where R is defined as 

R = x 100, 
Y IFml 

where IFcl and IFml are the amplitudes for the modified 
and true 'native' model structure factors. The r.m.s. 
(root mean square) difference between the calculated 
and true phases was 15 o. The data most affected by the 
solvent flattening were those structure factors on the 
edge of the resolution range. Between 30 and 31 A 
resolution the R factor was 28% with an r.m.s, phase 
change of 43 o. 

The diffraction ripples also extend through the 
density regions of the map. The ripples contain a 
fivefold component which is not lost on averaging. The 
magnitude of the effect was determined by averaging 
the same 30 A resolution electron density map cal- 
culated previously but leaving the solvent regions 
unchanged. The reconstructed map was again Fourier 
transformed to give calculated amplitudes and phases. 
The R factor between the initial and calculated 
amplitudes was ~2% with a 15 ° r.m.s, phase change. 
This calculation includes the errors introduced by the 
numerical interpolation of the averaging algorithm. 

The errors associated with the numerical evaluation 
of the symmetry-related points in the electron density 
map were found by building a map which exhibited true 
noncrystallographic symmetry. This model map con- 
tained no truncation ripples. The electron density 
within the envelope was averaged and placed back into 
the original map. Both the original and averaged map 
were Fourier transformed to give original and modified 
structure factors. The differences between these data 
sets arise only from the errors introduced by the 
interpolation algorithm used for deriving density values 
at non-integral locations in the electron density map. 
This problem has been discussed in detail by Bricogne 
(1976). The magnitude of the error is in part dependent 
upon the fineness of the sampling interval at which the 
original map was calculated. An R factor of ~ 1% with 
an r.m.s, phase change of ~7 ° was obtained when the 
map was calculated at intervals of one-fifth of the 
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spacing of the highest-resolution data included in the 
calculation. The error was larger if a coarser grid was 
used. In all the subsequent calculations, a sampling of 
one-fifth of the resolution limit, or finer, was used for 
the initial map calculation. 

The combination of both averaging and solvent 
flattening with this model data set at 30 A resolution 
results in a 6.5% change in the amplitudes and r.m.s. 
phase change of 25 o. These calculations show that the 
major limitation on convergence is caused by series 
termination. They also demonstrate that phases refined 
by noncrystallographic averaging and solvent flattening 
cannot converge on an absolutely correct set if the data 
are truncated. For this model data set at 30/l, 
resolution an R factor of better than 6.5 % between the 
calculated and true amplitudes cannot be obtained by 
real-space refinement even when starting from the true 
phases. 

Limitations Imposed by unmeasured data 

The absence of data within the resolution sphere of the 
refinement imposes a serious limitation on the phase 
convergence. This problem has been discussed pre- 
viously by Nordman (1980) in the refinement and 
phase extension for satellite tobacco necrosis virus. 
Nordman demonstrated that inclusion of calculated 
values for the missing data improved the self- 
consistency of the phase extension considerably. 
Furthermore, when the missing data were eventually 
measured, comparison of their experimental and 
calculated values showed a very consistent agreement. 
In order to assess the effect of unmeasured data at low 
resolution a series of calculations were undertaken 
using 90% of the model data. 

The data set collected from crystals of polyoma virus 
capsids included measurements for 94% of the data out 
to 22.5/i, spacing. In particular, no terms were 
recorded below 150A resolution. These conditions 
were simulated by removing a random 10% of the 
'native' model data between 30 and 200 A resolution 
together with all the terms with spacings larger than 
200 A. The intrinsic limitation imposed by the missing 
data was shown by calculating a map using the 
remaining correct amplitudes and phases. The density 
regions of this map were symmetry averaged over the 
noncrystallographic fivefold axis and the solvent 
regions were given their average value. The modified 
map was Fourier inverted to give a new set of 
calculated amplitudes and phases. The overall R factor 
between the constrained and native model data for the 
90% included in the calculation was 21% with an r.m.s. 
phase change of 33 °. This should be compared to the R 
factor and r.m.s, phase change of 6.5% and 25 ° when 
the nonerystallographic constraints were applied to a 

map calculated from 100% of the data out to 30 A, 
spacing. The absence of terms with spacings greater 
than 200/i, together with a random 10% between 30 
and 200/i, spacing introduces significant changes in the 
structure factors derived from the constrained map. 
This effect as shown later will prevent satisfactory 
convergence of phase refinement and extension. 

Phase refinement by symmetry averaging depends 
upon the continuity of the Fourier transform in 
reciprocal space. Ignoring unmeasured data introduces 
artefactual discontinuities in the transform. The refine- 
ment process smooths out the perturbations reducing 
the value for the terms close to the missing data and 
predicting an amplitude and phase for the missing data. 

The absence of the low-resolution terms generates 
low-frequency ripples which propagate throughout the 
map. The 10% of the data missing between 30 and 
200 A, resolution introduces higher frequency ripples 
that perturb the fivefold symmetry in the density 
regions of the map. Averaging the map and flattening 
the solvent regions smooths out the perturbations and 
generates calculated amplitudes and phases for the 
missing data. These calculated values for the missing 
data show a good agreement with their actual values. 
The overall R factor for the missing data between the 
calculated and true amplitudes was 21% with an r.m.s. 
phase difference of 29 o. 

The restrictions introduced by unmeasured data may 
be overcome in two ways. The best solution would be 
to collect 100% of the data; however, this is not usually 
practical. Alternatively, the effect may be mitigated by 
including the calculated values for the absent data 
derived from the previous cycle. When the calculated 
amplitudes and phases for the 10% missing data just 
described were included in four additional cycles of 
refinement, the R factor between the refined and native 
amplitudes for the 'observed' 90% of the data fell from 
21 to 8% with a decrease in the r.m.s, phase difference 
of 33 to 27 ° . 

The calculated values for the missing data are 
generally smaller than their correct values. Con- 
sequently, it was found acceptable to include these 
terms at a fairly high weight of ,.-0.9. The calculated 
values for these terms improved considerably in further 
cycles of refinement after their inclusion. The overall R 
factor between their actual and calculated amplitudes 
fell to 7.4% with an r.m.s, phase difference of 15 ° after 
four cycles. 

In practical terms the inclusions of estimated values 
for any unmeasured reflections requires that the struc- 
ture-factor list contain an entry for all of the recorded 
data whether it is above background or not. The 
zero-intensity data points in the list then explicitly 
specify the nodes in the transform. In this way 
calculated values will only be included for those points 
which are unrecorded, while measured nodes remain 
zero. 
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Tests on convergence 

The major purpose of the model calculations was to 
demonstrate that the refinement of a trial set of phases 
against an 'observed' set of amplitudes using molecular 
replacement can lead to the true set of phases belonging 
to the amplitudes. An important aspect of these model 
studies was to determine to what extent the initial phase 
set influences the final solution. In order to assess the 
effect of the initial phases, a trial set of phases was 
generated by Fourier transforming a map whose 
density distribution differed from the 'native' model in a 
variety of ways. 

The trial phases were combined with the native 
model structure-factor amplitudes and used to cal- 
culate an electron density map. The structure factors 
were weighted according to the fit of calculated 
amplitudes of the phasing model to the native model 
amplitudes. The weighting algorithm used took the 
form 

lIFcl- IFmll 
w - - e - -  

IFml 
This simple weighting scheme, which will be discussed 
later, proved to be essential when the phasing model 
differed considerably from the native model. 

Numerous sets of phases were tested. These may be 
placed into three classes: (a) phases from reasonable 
models built using the information that would be 
available from electron microscopy, solution scattering 
and physico-chemical data; (b) phases from a rudimen- 
tary model; and (c) phases from a misleading model 
which contains information that is incorrect, in an 
attempt to bias the final refined phases. 

Phases from all three classes of models refined 
towards the true set of phases within the limitations 
imposed by series termination. The number of cycles of 
refinement necessary for convergence was propor- 
tional to the magnitude of the initial phase error. These 
experiments showed that appropriately constrained 
phase refinement can lead to convergence to a phase set 
whose corresponding electron density map was 
indistinguishable from the map calculated from the real 
phases. 

Refinement of phases from a reasonable model 

The 'reasonable' phase model that was chosen con- 
sisted of 72 hollow cylinders of density 70A in 
diameter with a 34 A hole extending from 200-235 A 
located on a T = 7d surface lattice. These cylinders 
rested on a concentric shell of density extending from 
180 to 200 A. The location of the hexavalent unit was 
~10/~, from that used to generate the native model. 
The major differences between this phasing model and 

the native model structure were the radial extent of the 
concentric shell (180-200 v s  190-200/~) and morpho- 
logical units (200-235 v s  200-242 A) together with the 
lack of substructure. This model is considered reason- 
able because it was built according to the information 
that would have been available from electron micros- 
copy, solution scattering and crystal packing con- 
siderations. There were no presumptions made about 
the internal structure of the native model. 

The phases from this reasonable model were com- 
bined with the amplitudes from the native model out to 
30A resolution and used to calculate an electron 
density map. This map was symmetry averaged as 
described before and Fourier inverted to obtain a new 
set of improved phases. This process was repeated 
using the phases from the last cycle to calculate the 
initial map of the next cycle until there was no further 
improvement in the R factor between the calculated 
and native model structure factor amplitudes. 

The statistical results of this process are sum- 
marized as a function of resolution and refinement 
cycle in Fig. 2. The initial R factor between the 
amplitudes of the phase model and native model was 
40% with an r.m.s, phase difference of 72 °. The R 
factor after 15 cycles was 7-1% with an r.m.s, phase 
difference of 27 °. The major error lies at the edge of the 
resolution range where the series termination has its 
major effect. Fig. 2(c) shows the overall R factor as a 
function of cycle number. The major progress in the 
refinement occurs in the first four cycles. Thereafter the 
refinement converges slowly. 

The refinement of model phases occurs more slowly 
than the refinement of phases from isomorphous 
replacement. Model phases usually require 10-20 
cycles of symmetry averaging before convergence is 
reached, in contrast to the refinement of phases derived 
from multiple isomorphous replacement (MIR) which 
is usually complete in 3-5 cycles. This difference in 
behavior of MIR and model phases arises because of 
the nature of the reliable phase information present in 
each type. The phase information in MIR phases is 
more reliable at moderate resolution than at low 
resolution and is distributed about the correct set of 
phases. In contrast, phases from a model are more 
accurate at low resolution and contain no details of the 
high-resolution structure. Furthermore, the model 
phases constitute a self-consistent set whose corre- 
sponding density differs in a systematic way from the 
true electron density distribution. Consequently, it 
takes longer to remove the initial bias resulting in slow 
convergence. 

Refinement of phases from a rudimentary model 

The previous experiment demonstrates that phase 
refinement certainly works although this test did not 
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pose any serious difficulties. A more significant test is 
to see how little information is required in the phasing 
model in order to initiate phase refinement success- 
fully. This test might also illustrate if an alternative 
phase solution corresponding to a significantly different 
electron density distribution could be consistent with 
the constraints and the native model structure factors. 
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Fig. 2. Statistics for the refinement of phases from the reasonable 
model against the native model amplitudes at 30 A resolution. (a) 
The R factor as a function of resolution for the initial and final 
amplitudes; (b) the r.m.s, phase difference for the initial and final 
phases; and (c) the R factor as a function of refinement cycle. 

The model chosen for this test consisted of 60 
spherical morphological units 70 A in diameter placed 
close to the location of the hexavalent axes of a T--  7d 
surface lattice. The centers of the spheres were placed 
205 A from the center of the particle. These spheres 
intersected a concentric shell of density extending from 
a radius of 180-200 A. No density was placed on the 
12 pentavalent locations. Although this model is 
rudimentary, the basic presumption that the particle 
has icosahedral symmetry is still maintained. Icosa- 
hedral symmetry was presumed for all models. 

The phases from the rudimentary model were 
combined with the amplitudes from the native model 
and used to calculate an electron density map. The 
initial R factor between the two sets of amplitudes was 
55% with an r.m.s, difference of 93 ° between the 
phases. An illustration of the initial phase combination 
prior to averaging and solvent flattening is shown in 
Fig. 3(c). The map section corresponds to a plane 
perpendicular to the axis of a hexavalent unit 220 A 
from the center of the model. The cross section of the 
unaveraged map shows that the initial combination is 
very noisy. Comparison of this initial map (Fig. 3c) 
with the same section from the native model (Fig. 3a) 
and phase model (Fig. 3b) shows clearly that the initial 
phase dominate the first density map. 

Refinement of this set of phases proceeded far more 
slowly than those from the reasonable model described 
previously. After 15 cycles of refinement the R factor 
was 11% with an r.m.s, phase difference from the true 
set of 51 o. With an additional six cycles of refinement 
the R factor dropped to its final value of 7.2% with an 
r.m.s, phase difference of 28 °. The major reason for the 
slowness of the refinement is the large number of 
incorrect signs amongst the low-resolution centric 
reflections. Initially 42% of the centric reflections had 
the wrong sign. It is difficult for a centric reflection to 
change sign unless some form of weighting scheme 
dependent upon the fit of the individual observed to 
calculated structure factors is used. Consequently, it 
takes several cycles of down-weighting for a strong 
centric reflection with the incorrect sign to have its 
sign switched by its noncrystallographically related 
neighbors with the correct signs. 

A section through the final refined map is shown in 
Fig. 3(d). This is virtually indistinguishable from the 
correct 30 A native model map shown in Fig. 3(a). The 
calculations illustrated in Fig. 3 demonstrate that the 
weighted phase refinement with accurate data does 
converge on the correct phase solution. This example is 
particularly interesting because the phasing model had 
no density on the fivefold axes. The refinement 
constraints and weighting procedures allowed the 
phases to change so that the information in the ampli- 
tudes could be expressed. This shows that the refine- 
ment method can return structural information for 
features that were not included in the phasing model. 
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Refinement of phases from a misleading model 

An important test of the method is to see if it is possible 
to bias the final refined phases by introducing incorrect 
information in the starting phases. This is a significant 
question, since, in the real polyoma capsid data, all 72 
of the morphological units show fivefold substructure. 
It is important to determine if the fivefold nature of the 
hexavalent unit could be caused by systematic errors in 
the starting phases. 

This question was approached by taking the phases 
from a model whose hexavalent units contained a 
strong fivefold substructure. All the morphological 
units were composed of five cylinders of density with 
the same weight as the concentric shell of data upon 
which they rested. The all-pentamer substructure 
constituted 30% of the density in the phasing model as 
compared to 10% in the native model that was built 
with hexameric hexavalent units. One section of the 
enhanced fivefold phasing model is shown in Fig. 4(b). 
The combination of the phases out to 30 A resolution 
with the amplitudes of the native model is shown in Fig. 
4(c). In this example the fivefold character of the 

misleading phasing model is expressed in the initial 
electron density map. The R factor between the 
amplitudes of the two data sets was 47% with an r.m.s. 
phase difference of 71 o 

After i5 cycles of refinement the R factor between 
the calculated and refined amplitudes was 6.9% with 
an r.m.s, phase difference of 26 °. This phase set has 
converged to the expected limits imposed by series 
termination. The resultant electron density map (Fig. 
4d) is indistinguishable from the true 30 A resolution 
map (Fig. 4a). This refinement shows that there is no 
residual bias introduced by the misleading starting 
model in the final phase set once convergence to the 
limits imposed by truncation has occurred. 

The Influence of unmeasured data on phase 
convergence 

So far the refinement tests have been performed using 
all the data within the 30 A resolution sphere. As noted 
previously, this is an unrealistic situation. The un- 
measured data increase the R factor between the 
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Fig. 3. Refinement of phases from the rudimentary model at 30 A resolution. The maps are perpendicular to the axis of a hexavalent 
morphological unit, sectioned 220 A from the particle center. (a) The native model; (b) rudimentary phasing model; (c) combination of 
the phases from the rudimentary model and native model amplitudes and (d) combination of the final refined phases with native model 
amplitudes. 
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phases from misleading model and native model amplitudes; and (d) combination of the final refined phases with the native model 
amplitudes. 
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constrained and observed amplitudes but more 
seriously missing data can prevent satisfactory con- 
vergence of an incorrect set of phases, and can confuse 
the resultant density map. 

The effect of unmeasured data on phase refinement 
was demonstrated by using the partial data set 
described previously. This contained 90% of the terms 
between 30 and 200 A resolution, excluding all reflec- 
tions with spacings greater than 200 A. This incom- 
plete data set was combined with phases from the 
reasonable model described previously and refined to 
convergence. In this case the final R factor between the 
calculated and true amplitudes was 24% with an r.m.s. 
phase difference of 48 ° between the true and refined 
phases. Convergence to these results occurs in about 
three cycles with no further improvement in the 
interpretability of the density map over an additional 15 
cycles of refinement. The R factor and r.m.s, phase 
difference after 18 cycles as a function of resolution are 
shown in Figs. 5 (a) and (b), respectively. 

A section of the initial electron density map 
computed using phases from the reasonable model 
combined with the partial native model data set is 

_ 

shown in Fig. 6(a). The same section after 15 cycles of 
refinement but prior to the final averaging and solvent 
flattening is shown in Fig. 6(b). This map is very noisy. 
Averaging this map (Fig. 6c) significantly reduces the 
noise as would be expected. However, there are still 
considerable changes in the electron density distri- 
bution introduced by the missing data (cf. Fig. 4a). 
Even at 30 A resolution the absence of 10% of the data 
significantly confuses the substructure in the hexa- 
valent morphological units. 

The previous refinement experiment was repeated 
with the inclusion of the calculated values for the 
missing data starting after the second cycle. The 
missing terms were added in shells of increasing 
resolution over four cycles. After 15 cycles of refine- 
ment the R factor for the 'measured' 90% was 6.7% 

with an r.m.s, phase difference of 28 °. The distribution 
of R factor and phase difference for these data is also 
shown in Figs. 5(a) and (b). The resultant electron 
density map (Fig. 6d) is indistinguishable from the 
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Fig. 5. The distribution of (a) R factors, and (b) r.m.s, phase 
differences for refinement after 18 cycles of refinement with 10% 
of the data removed and all terms with spacings larger than 
200 A (&). Inclusion of the calculated values for the missing data 
(~) gives a significant improvement in the quality of the 
refinement. 
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Fig. 6. The effect of unmeasured data on the phase refinement at 30 A resolution. (a) Initial combination phases from the reasonable model 
with 90% of the native model amplitudes; (b) unaveraged and (c) averaged maps calculated using phases refined using 90% of the data; 
(d) the unaveraged map calculated from phases refined including calculated values for the missing 10% of the data; this is virtually 
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correct map (Fig. 3a). The comparison of the sections 
with and without the calculated values for the 'un- 
measured' data (Figs. 6c and d, respectively) demon- 
strates the importance and necessity of compensating 
for this data. 

The R factor and r.m.s, phase difference between the 
calculated and true values for the 'unmeasured' data 
were 6% and 17 ° . The agreement between the 
calculated and true values for the data that were left out 
is slightly better than that obtained for the 90% of the 
data that were included as 'observed'. This occurs 
because the R factor is dominated by the strong 
low-resolution terms which are accurately regenerated 
by the solvent flattening. The higher-resolution missing 
data can be recovered because the noncrystallographic 
fivefold symmetry leads to an oversampling of the 
particle transform. Averaging density maps regenerates 
the continuous transform of the icosahedral particle. 

The role of the envelope 

The purpose of the envelope is to define which parts of 
the unit cell are to be symmetry averaged. All other 
points are treated as solvent and set to some uniform 
value. It is important to contain all the density within 
the envelope. Failure to enclose all the density will 
result in a large R factor between calculated and 
observed data as shown later. 

Evidence for an incorrect envelope can be seen by 
looking at an averaged electron density map. The 
gradient across the envelope boundary will be a smooth 
function except where the density has been incorrectly 
truncated. In practice this requires that the envelope 
should be looser than that suggested by molecular 
weight and partial specific volume measurements. It 
must be remembered that at low resolution the 
boundaries between protein and solvent are not well 
resolved. Thus, the density will extend beyond any 
volumes dictated by physical-chemical information. 

The solvent regions place a constraint on the phases. 
The larger the volume that can be associated with 
solvent regions, the more powerful the constraint. Thus, 
the choice of envelope is a compromise between the 
necessity to enclose all the protein and yet leave as 
large a volume as possible in the solvent regions. 

There are two other considerations. Firstly, the 
envelope must show the particle symmetry. In the case 
of spherical viruses, the simplest envelopes are either 
spherical or icosahedral shells. More detailed en- 
velopes, based on information of the surface structure 
may, if incorrect, prevent the refinement from con- 
verging. Secondly, the envelopes of adjacent particles 
may touch but not overlap. A point inside an envelope 
may belong to only one particle. This is a necessary 
requirement in order to locate correctly the non- 
crystallographicaUy equivalent densities in order to 
generate the average for that point. 

The role of the envelope was determined by refining 
the same phase sets with different envelopes. Refine- 
ments were performed using the phases from both the 
reasonable and rudimentary phase models described 
earlier. 

The envelope used consisted of a concentric shell 
truncated by planes perpendicular to the icosahedral 
threefold axes. The virus particles are situated at (0,0,0) 
and (½,½,½) in the unit cell such that they contact one 
another along the body diagonals which are the 
crystallographic threefold axes. The three hexavalent 
units which lie adjacent to the crystallographic three- 
fold axes contact one another tip-to-tip because of the 
way the hexavalent vertices are arranged on the T = 7d 
icosahedral surface lattice. Fig. 7 shows a section 
through the native model virus particle, together with 
the envelope that was used to contain the density 
regions of the map. This envelope is the simplest 
icosahedraUy symmetric non-overlapping envelope 
that can be packed in an 123 unit cell. The use of a 
spherical envelope would have truncated the density on 
the hexavalent and pentavalent morphological units. 

The results of eight refinements at 30 A resolution 
using four different envelopes are summarized in Table 
2. The first envelope consisted of a concentric shell 
extending radially from 173 to 235 A which truncated 
the outer 15 A of the native model density. Envelopes 
2, 3 and 4 were used to show the effect on the phase 
refinement of increasing the volume of the map which 
was symmetry averaged. These statistics show that the 
best phase refinement for both trial phase sets is 
obtained Using a tight envelope (2), even though it 
results in slightly higher R factors than the looser 
envelope (3). 
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Fig. 7. A section perpendicular to the [110] direction through the 
middle of the native model showing the envelope used for defining 
the boundaries of the particle. This map shows that hexavalent 
units on adjacent particles contact each other tip-to-tip. 
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Table 2. The effect of the choice of molecular envelope on phase refinement 

External* Internal Reasonable Rudimentary 
radius radius % model model 

(,4,) (A) Solvent~" R r.m.s. A~ (o) R r.m.s. A~ (°) 

1. 235 173 92.0 25.0 58 26.0 71 
2. 252 173 52.0 7.1 27 7.2 28 
3. 265 160 40.7 6.4 32 12.2 47 
4. 265 0 22.3 7.9 47 16.0 78 

* Envelopes 2, 3 and 4 are truncated by planes perpendicular to the 20 icosahedral threefold axes at a distance 247 A from the center. 
I" Fraction of the unit-cell volume outside the envelope. 

The importance of solvent flattening as a constraint 
in the phase refinement is shown by envelope 4 in which 
the interior of the particles was ieosahedrally averaged 
but not set to the average solvent density. In this case 
the phases from the reasonable model converged to a 
set which gave a low R factor but poorer phases. When 
this envelope was used in the refinement of the phases 
from the rudimentary model the convergence was not 
as satisfactory. The solvent flattening makes a signifi- 
cant contribution towards changing the signs of 
incorrect centric reflections. This accounts for the 
inability of envelope 4 to switch the incorrect signs of 
the centric reflections of the rudimentary phase set. 

The first envelope shows the effect of excluding part 
of the density, by truncating the outer 15 A of the 
particle. This represents an exclusion of 17% of the 
density. Its absence severely restricts the convergence 
of the refinement as indicated both by the high R 
factors and r.m.s, phase differences. 

Phase extension 

Phase extension was necessary in solving the structure 
of polyoma virus because initial phases generated from 
models were not reliable beyond a resolution of ~30 A. 
Attempts to refine model phases against the real data 
for all reflections out to 22.5 A resolution were 
unsuccessful. Unsatisfactory convergence of the phases 
for the higher-resolution data results because it is not 
possible to model accurately the details of the density 
distribution within the morphological units or the inner 
shell. The diffraction to ~30 A resolution is dominated 
by the volume and location of the morphological units. 
These parameters can be confidently modeled and 
result in a good set of phases for initiating the 
refinement at 30 A resolution. Because approximately 
two thirds of the data were phased by extension, it was 
vital to demonstrate that phase extension is applicable 
at low resolution. This was accomplished using the 
model amplitudes. 

Solvent flattening or application of the envelope to 
an electron density map is the source of the phases 
generated just outside the resolution sphere of data 
used in the map calculation. This was demonstrated by 
setting the solvent regions of an electron density map 

calculated using terms out to 30 A resolution to their 
mean value without symmetry averaging. The modified 
map was Fourier transformed to yield new amplitudes 
and phases. As mentioned earlier, this introduces a 4% 
change in the amplitudes and 15 ° r.m.s, change in the 
phases for those terms included in the initial map 
calculation. In addition, the solvent flattening generates 
amplitudes and phases for reflections with spacings 
smaller than 30 A. The R factor for these generated 
amplitudes compared with their true values for the data 
between 28.5 and 30 A resolution was 37% with an 
r.m.s, phase difference of 47 °. The phase difference for 
the most intense half of the data in this narrow shell 
was 25 ° , which demonstrates that phases can be 
reliably extended if the phases of the lower-resolution 
data are known. 

The phase extension strategy adopted consisted of 
taking the phases for a narrow band of structure 
factors just outside the resolution sphere of the previous 
cycle of refinement and including them with their 
corresponding 'observed' amplitudes in the next cycle. 
These additional phases were refined for two cycles 
before any additional terms were added. In the first 
cycle the new reflections were given unitary weights; in 
the second and subsequent cycles they were weighted 
according to the fit of the calculated to the observed 
amplitudes. Additional shells of data were included in 
alternate cycles of refinement until all the data had been 
included. 

Phase extension utilizing the strategy outlined above 
was tested on the native model data set. The initial 
phases at 30 A resolution were obtained from the 
refinement of phases from the reasonable model 
described earlier. After 24 cycles of refinement and 
phase extension the overall R factor between the 
calculated and true native model amplitudes for all the 
data to 22.5 A resolution was 6% with an r.m.s, phase 
difference of 32 °. One section through the phase- 
extended electron density map is shown in Fig. 8(b). 
This should be compared with the same section through 
the native model map shown in Fig. 8(c). Even though 
there is a slight loss of detail, there is no ambiguity in 
distribution of the substructure. Comparison of the 
extended and refined electron density map with the 
original 30 A map shows that the extension strategy 
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can yield correct structural details not present in the 
initial phases. 

The quality of the phase extension and refinement 
decreased with increasing resolution. This is, in part, a 
consequence of the fall-off in intensity of the data but 
also a reflection of the weaker constraint of the 
envelope. A more detailed envelope at this stage would 
have yielded better phase prediction and constraint. 

The effect of  errors in the data on real-space refinement 

In all of the experiments described so far, the 
structure-factor amplitudes of the native model data set 
have contained no errors. In order to see the effect of 
noise in the data a random set of errors was imposed on 

The effect of  unmeasured data on phase extension 

The absence of a small percentage of the data severely 
restricts the progress of phase extension and associated 
phase refinement. It was found that inclusion of 
calculated values for the 'unmeasured' structure factors 
and phases allowed the calculations to converge to an 
acceptable solution. The strategy adopted consisted of 
including calculated values for the unmeasured struc- 
ture factors two cycles out of phase with the inclusion 
of the new phases for the observed data. This lag 
enabled the shell of data just included to refine itself 
and predict the values for the data which were absent. 

Fig. 9(a) shows the refinement statistics as a function 
of resolution for phase extension with and without 
calculated values for the 'unmeasured' data. Inclusion 
of the calculated values for the absent data gave an 
overall R factor of 8-2% with a 35 ° r.m.s, phase 
difference compared to the true values; whereas their 
absence resulted in an R factor of 25% and 72 ° r.m.s. 
phase difference. 

One section through a hexavalent unit for the 
averaged map after phase extension using 90% of the 
data is shown in Fig. 10(a). The same section is shown 
in Fig. 10(b) for phase extension after including 
calculated values for the 10% of the data which was 
considered 'unmeasured'. This map was not averaged. 
Comparison of the two sections with the true 22.5 A 
map shown in Fig. 10(c) shows that failure to 
compensate for the unmeasured data will yield an 
incorrect and confusing electron density map. 
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Fig. 9. The distribution of (a) R factor and (b) r.m.s, phase 
difference for phase extension and refinement including data with 
spacings larger than 200 A but omitting a randomly distributed 
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the model amplitudes. This resultant data set was used 
in a series of phase refinements. 

The error applied to the intensity for each reflection 
had two components. The first component was in- 
dependent of the magnitude of the intensity and 
exhibited a Gaussian distribution about zero. This term 
mimicked the deviation in the film background which is 
a major term in the errors associated with the real data. 
The second component applied an error proportional to 
the magnitude of the intensities. The parameters were 
adjusted until the inaccurate data set gave a distri- 
bution of R factor with intensity and resolution that 
was worse than the scaling statistics observed for the 
real polyoma capsid data. The overall R factor between 
the inaccurate and perfect data was 10% on intensity 
which is worse than the symmetry-equivalent R factor 
for the capsid data of 5.7%. 

The phases from the reasonable model were refined 
against the inaccurate data. The convergence was 
somewhat slower; however, after 15 cycles the overall 
R factor between the calculated and inaccurate set was 
9.3%. This is approximately 1.5% higher than the 
convergence obtained with the native data. Most 
significantly, the r.m.s, phase difference between the 
refined and native model phases was only 31 o. This is 
very similar to the value of 27 ° for the same refinement 
using the native data. These experiments show that 
small random errors do not prevent the refinement from 
converging close to the true phases. 

Phase extension with the inaccurate structure factors 
converged to a final phase set whose final R factor was 
8.8%, 2% higher than with the native model data. The 
r.m.s, phase difference between the refined and true 
phases was 35%, which is only slightly worse than the 
32 ° r.m.s, phase difference observed for extension of 
the perfect data. The resultant electron density map still 
showed sixfold substructure in the hexavalent morpho- 
logical units, even though there was a loss of some 
detail. In this case averaging the final electron density 
map enhanced the substructure of the morphological 
units. 

W e i g h t i n g  s c h e m e s  

As noted by Bricogne (1976) it is desirable to weight 
each reflection in the map calculation according to the 
error in its phase. In this way reflections whose phases 
are correct will help refine those whose phase error is 
higher. For isomorphous replacement it is possible to 
derive a phase probability function and use this to 
weight the contribution of each reflection to the initial 
Fourier calculation. Such a function is not available for 
phases derived from model building; however, it was 
found that the simple weighting scheme described 
earlier greatly facilitated the phase refinement. 

The primary purpose of the weighting scheme in the 
refinement of model phases is to allow the phases to 
change more easily and prevent the refinement from 
being locked into a false minimum. This freedom of 
movement in the phases is necessary because phases 
generated from models constitute a self-consistent set 
which impose a systematic bias on the initial map 
calculation. This is in contrast to phases generated by 
isomorphous replacement in which the errors should be 
randomly distributed about the correct set. Refinement 
of isomorphous phases primarily involves reducing the 
noise in the initial set. 

The improvement in the convergence caused by the 
weighting scheme was demonstrated by refining the 
phases from the rudimentary model described earlier 
using unitary weights. Initially 42% of the low- 
resolution centric terms had incorrect signs. After 21 
cycles of refinement with a unitary weighting scheme, 
the R factor between the calculated and native model 
amplitudes was stationary at 18% with an r.m.s, phase 
difference of 52 ° . This should be compared to the final 
R factor and r.m.s, phase difference of 7.2% and 28 ° 
when a weighting scheme was used. The major reason 
for the lack of convergence was the inability of a few 
large centric reflections with spacings between 80 and 
100 A to change signs to their correct values. 

The unitary weighting scheme was useful once 
convergence using the exponential scheme had been 
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Fig. 10. The effect of unmeasured data on phase extension from 30 to 22.5 resolution. (a) Phase extension with 10% of the data missing 

and all terms with spacings >200 A; (b) phase extension including calculated values for the missing data; (c) the correct native model 
map at 22.5 A resolution. 
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achieved. A few additional cycles using unitary weights 
lowered the final R factor by ~0.5% and reduced the 
r.m.s, phase difference by ~4 °. Thus, some form of 
weighting scheme dependent upon the fit of the 
calculated-to-observed amplitudes is necessary to allow 
the phases to change easily in the early stages of the 
refinement. 

Solvent density values 

The value given to the solvent density affects the 
calculated amplitudes and phases of the low-resolution 
structure factors. F0o0 was not included in any of the 
maps calculated for this study; thus, necessarily the 
total density in the maps was always zero. The solvent 
regions of the map were given their average value in 
order to maintain the zero total electron density. Since 
the envelope contains a net positive density the solvent 
value will be numerically negative. This was the 
simplest and most practical method of defining the 
solvent density. 

The value given to the solvent density affected the 
phase refinement. Experiments with the native model 
data, in which the solvent density was set numerically 
to zero, failed to converge. This occurs because setting 
the density to zero, when numerically its average is 
negative, adds a net positive density to the map. The 
Fourier transform of the resultant map will contain a 
contribution in the calculated structure factors from 
this density. This will be the convolution of the 
transform of the solvent regions on the transform of the 
density. The effect will not be significant at high 
resolution; however, the very-low-resolution calculated 
terms will be incorrect. This has two consequences. 
Firstly, it will affect the scaling of the calculated to 
observed amplitudes and, secondly, the calculated 
values for unmeasured data will be incorrect. 

Series termination results in diffraction ripples which 
extend throughout the map. This produces negative 
ripples below the mean solvent density. In those cases 
where the envelope contains significant regions of 
solvent (such as between the morphological units) 
negative ripples can occur. It is incorrect to set these 
points to the mean solvent density since this adds a net 
positive density to the interior of the envelope. This 
generates a spurious contribution to the calculated 
amplitudes. A better approach for accommodating 
these negative ripples is to create a more detailed 
envelope so that both the positive and negative 
components of the ripples can be removed. 

Conclusion 

The calculations that have been described show that 
trial phases from models of icosahedral particles such 

as polyoma virus (which are constructed using the 
structural information available from electron micros- 
copy and small-angle scattering) can be refined 
successfully against low-resolution X-ray diffraction 
data using the constraints of solvent flattening and 
noncrystallographic symmetry averaging. The experi- 
ments show that a low R factor (~ 10%) between the 
calculated and observed amplitudes corresponds to a 
small phase difference between the refined and true 
phases, if the constraints are stringently applied. Thus, 
the R factor can be used to judge the progress of the 
refinement and assess the reliability of the phases on 
convergence. The calculations show that the initial 
phases do not continue to bias the refined phase set 
once a low R factor between the calculated and 
observed amplitudes has been achieved. From these 
studies it can be inferred that the refinement techniques 
are sensitive enough to distinguish between a hexa- 
merit and pentameric capsomer for the real polyoma 
virus capsid. 

The model calculations also demonstrate the impor- 
tance of compensating for any unmeasured data. They 
show that at low resolution it is essential to include 
calculated values for unrecorded data in the refinement 
calculations. Failure to reconstruct the unmeasured 
data will lead to a high R factor, phase error and 
confusing electron density maps. 

The purpose of the calculations was to establish and 
verify the correct strategy for phasing the real polyoma 
virus capsid data. However, the observations on the 
treatment of unmeasured data, phase extension and the 
intrinsic limitations will apply in principle to any study 
that uses noncrystallographic symmetry and solvent 
flattening as a phase constraint. The use of model 
calculations which closely simulate an experimental 
system is a powerful technique for determining the 
reliability of the computational method and setting a 
level of expectation for the results. 
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Abstract 

An investigation of integrated intensity is performed for 
reflections 111 and 333 in plane-polarized Cu Ka~ 
radiation for a series of silicon dislocation single 
crystals. Integrated intensity thickness oscillations 
(Pendell~isung effect) have been found at low dis- 
location density (10-100 mm-2). It is shown that the 
oscillations attenuate with increasing dislocation den- 
sity, while their period somewhat increases. Thickness 
dependence of both extinction factor and polarization 
ratio is derived at high dislocation density (103-106 
mm-2). The present theoretical approaches based on 
the Darwin transfer equations appeared to be unsuit- 
able for treating the obtained experimental data. They 
are analysed on the basis of coherent and diffuse 
scattering components. 

1. Introduction 

The previous investigations of polarization properties 
of Bragg reflections for silicon and germanium dis- 

location crystals (Olekhnovich, Markovich & 
Olekhnovich, 1980) show that the mosaic model of 
crystals is applicable for describing diffraction in real 
crystals, provided the dislocation density is over 104 
mm -2. Besides, diffraction in mosaic crystals is found 
to be practically determined only by primary 
extinction. 

Kato (1980a,b), using equations of Takagi-Taupin 
type (Takagi, 1969), developed a statistical dynamical 
diffraction theory for crystals of any perfection degree. 
In this theory extinction is not subdivided into primary 
and secondary. 

To establish the scattering mechanism of X-rays in 
real crystals it is important to study diffraction 
properties as a function of sample thickness using the 
Laue method. That method, as is known, allows one to 
investigate the Pendell6sung effect, anomalous trans- 
mission, as well as the extinction effect. Lawrence & 
Mathieson (1977) proposed a simple method of 
single-crystal sample inclination for a controllable 
change of X-ray path length in Laue geometry. This 
procedure was used for studying integrated intensity 
thickness oscillation in perfect crystals (Somenkov, 
Shilstein, Belova & Utemisov, 1978). 


